Diffusion Tensor Imaging: Evaluation of Tractography Algorithm Performance Using Ground Truth Phantoms

نویسنده

  • Alexander J. Taylor
چکیده

(Abstract) Diffusion Tensor Magnetic Resonance Imaging (DT-MRI), also known as Diffusion Tensor Imaging (DTI), is a unique medical imaging modality that provides non-invasive estimates of White Matter (WM) connectivity based on local principal directions of anisotropic water diffusion. DTI tractography estimates are a macroscopically sampled description of underlying microscopic structure, and are therefore of limited validity. The under-sampling of underlying white matter structure in DTI data gives rise to Intra-Voxel Orientational Heterogeneity (IVOH), a condition in which white matter structures of multiple different orientations are averaged into a single DTI voxel sample, causing a loss of validity in the diffusion tensor model. Fast Marching Tractography (FMT) algorithms based on fast marching level set methods have been proposed to better handle the presence of IVOH in DTI data when compared to older Streamline Tractography (SLT) methods. However, the actual performance advantage of any tractography algorithm over another cannot be conclusively stated until a ground truth standard of comparison is developed. This work develops an optimized version of the FMT algorithm that is dubbed the Front Propagation Tractography (FPT) algorithm. The FPT algorithm includes unique approaches to the speed function, connectivity estimation, and likelihood estimation components of the FMT framework. The performance of the FPT algorithm is compared against the SLT algorithm using ground truth software phantom data and human brain data. Software phantom ground truth experiments compare the performance of each algorithm in single tract and crossing tract structures for varying levels of diffusion tensor field perturbation. Human brain estimates in the corpus callosum yield qualitative comparisons from inspection of 3D visualizations. A final area of exploration is the construction and analysis of a ground truth physical DTI phantom manifesting IVOH. throughout the course of my research. Dr. Wyatt's technical ability and down to earth kindness was vital to the completion of this project. I realize that very few professors would have allowed me such freedom in choosing the course of my research, and for that freedom I am thankful. My next big thank you is to the Via family and the Bradley Department of Electrical and Computer Engineering for awarding me with the Bradley Fellowship during my graduate studies. I greatly appreciate being given the opportunity to complete my research distracted by work or financial worries. I hope that the Bradley Fellowship will continue far into the future and allow other fortunate students to pursue their own research visions. I …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Fiber Crossing Phantoms Out of Experimental DWIs

In Diffusion Tensor Imaging (DTI), differently oriented fiber bundles inside one voxel are incorrectly modeled by a single tensor. High Angular Resolution Diffusion Imaging (HARDI) aims at using more complex models, such as a two-tensor model, for estimating two fiber bundles. We propose a new method for creating experimental phantom data of fiber crossings, by mixing the DWI-signals from high ...

متن کامل

Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom

As it provides the only method for mapping white matter fibers in vivo, diffusion MRI tractography is gaining importance in clinical and neuroscience research. However, despite the increasing availability of different diffusion models and tractography algorithms, it remains unclear how to select the optimal fiber reconstruction method, given certain imaging parameters. Consequently, it is of ut...

متن کامل

Diffusion Capillary Phantom vs. Human Data: Outcomes for Reconstruction Methods Depend on Evaluation Medium

PURPOSE Diffusion MRI provides a non-invasive way of estimating structural connectivity in the brain. Many studies have used diffusion phantoms as benchmarks to assess the performance of different tractography reconstruction algorithms and assumed that the results can be applied to in vivo studies. Here we examined whether quality metrics derived from a common, publically available, diffusion p...

متن کامل

Fiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation

Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres.  In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004